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Improved Route to Bridged Planar Poly(p- 
phenylene) Derivatives for Maximization of 

Extended ^-Conjugation 

Javdeep J. S. Lamba and James M. Tour* 
Department of Chemistry and Biochemistry 

University of South Carolina 
Columbia, South Carolina 29208 

Poly(p-phenylene) (PPP), a highly insoluble polymer 
that has been studied extensively for its possible electronic 
and photonic applications, has a 23° twist between the 
consecutive aryl units due to ortho hydrogen interactions.1 

Attempts to enhance the solubility by substitution of the 
rings forces the consecutive aryl units even further out of 
plane resulting in a plummet of the extended conjugation 
(easily observed by the optical spectra).1 We recently 
described a route to soluble ladder PPP derivatives.2 Here 
we describe an improved synthetic route to the monomers 
as well as an aryl-substituted ladder PPP derivative.3 

Our retrosynthetic approach involved two key steps 
(Scheme I, M = metal). First, imine cleavage to the 
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ketoamine functionalized PPP, and second, bond cleavage 
to the two arene systems shown. Since Pd(0)-catalyzed 
oxidative addition reactions are facilitated with electron 
deficient ring systems,4 we chose to keep the halides on the 
ketoaromatic portion. 

After several nearly quantitative model reactions, we 
synthesized the two key monomers needed for the desired 
AB-type step growth polymerization. Dibromoxylene was 
oxidized by a two-step procedure5 which was superior to 
the one step Co(OAc)2 procedure2 described previously. 
The route described here is an improvement over our 
former approach in that the same dibromobis(acid 
chloride) (1) can be used for the synthesis of both the A 
and B monomer units. Conversion of 1 to the diketone was 



accomplished with the use of the lower order 
alkylcyanocuprate, or an arylzinc halide and Pd(0) 
catalysis.6 TTiis Pd(0)-catalyzed procedure proved to be 
superior for the aryl ketone formation. 1 could also be 
converted to the bis(acylazide) under phase transfer 
conditions. Photolysis with a UV TLC-spotting light 
affected the bis-Curtius rearrangement with N2 expulsion. 
/-BuOH trapping of the bis(isocyanate) afforded the desired 
bis(BOC)-protected amine 5.7 These phase transfer 
conditions and subsequent photochemical rearrangements 
were the only set of conditions that worked, in our studies, 
for this transformation. The yield of 59% for 5 is after 
repeated crystallization, thus, the efficiency of this process 
is quite good. 
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While 5 was nearly insoluble in ether at 0°C, it could 
be tetralithiated in ether to form a soluble intermediate 6 in 
almost quantitative yield (checked by addition of TMSC1 
and isolation of the arylbis(silane) after aqueous work-up). 
Treatment of 6 with methyl pinacol borate afforded the 
monomer 7 which could be purified by passage through a 
flash chromatogfaphy column containing a mixture of 
activated charcoal and Celite as the stationary phase (silica 
gel or neutral alumina caused rapid decomposition of the 
intermediate) and CH2CI2 as the eluant followed by 
recrystallized to form pure 7. 

Reaction of 2, 3, or 4 with 7, in the presence of a 
Pd(0) catalyst, yielded the soluble polymers 8, 9, and 10, 
respectively, from which size exclusion chromatography 
(SEC) could be used to determine the hydrodynamic 
volumes relative to polystyrene (8: 63% yield after 
fractional precipitation, Mn = 9,850 with Afw/A/n = 1.85; 
9: 97% yield after fractional precipitation, Mn = 28,400 
with Mw/Mn = 3.70; 10: 80% yield after fractional 
precipitation, Mn = 18,500 with Mw/Mn = 2.75). Upon 
exposure of 8, 9, or 10 to trifluoroacetic acid (TFA), 
quantitative loss of the BOC protecting group and 
cyclization afforded 11 (90% yield), 12 (97% yield), and 
13 (90% yield), respectively.8 All stretches for the 
ketone, carbamate, and amine in 8, 9, and 10 were absent 
in the FTIR spectrum of the planar polymers. 
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The optical absorption data showing enormous 
bathochromic shifts in the polymers upon cyclization 
(conversion of 8 to 11, 9 to 12, and 10 to 13); an 
observation consistent with the proposed ladder formation 
(Table I). The UV-vis spectrum of 13 in a 
CH2Cl2/trifluoroacetic acid (3/2) mixture is shown in 
Figure 1. The absorptions of these planar polymers are far 
more bathochromically-shifted than those of the planar 
trimers,9 oligo(p-phenylenes), and PPP.!0 



Table I. Optical Absorption Data 
Compound \  in solution (nm)a X of solid (nm)a 

8 CH2CI2:250, 306 (sh) 248. 308b 

9 CH2CI2:25Ü. 388 250. 398b 
10 CH2Cl2:2i4 2J4 
11 CH2C12/TFA: 374, m 426 

(sh), 514, 520 (ed)c 

12 CH2CI2/TFA: 376, 4JJÜ, 
428, 478, 516, 530 (ed)C 

463-49Qd 

13 CH2Cl2/TFA:380, 4Q2.458, 
506, 549c 

CKhO CH2CI2:2M (ref 9) 

Chffb CH2Cl2:224(ref 9) 

p- 
sexiphenylene 

CHCl3:2Ii(ref 10) 

PPP 
(calcd   infinite 344 (ref 10) 

a^max is underlined, (sh) is shoulder, (ed) is tailing 
edge at -10% of Xmax intensity. DAlso a strong carbonyl 
absorption at 196 nm. c Spectrum recorded on the acid 
solublized, therefore, multiprotonated system. ^These Xmax 
values were recorded on a series of four different polymer 
samples of 9   in order to  insure  their reproduciblityJ * 

Figure 1. UV-vis spectrum of 13 in a CH2CI2/TFA (3/2) 
mixture 
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